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The problem of radiation doses measurements is important both in research and in practical applications whenever one 
needs to evaluate the effects of irradiation from the energy deposited by radiation into substance. Among the approaches 
currently available, the ones using free-air ionization chambers and cavity ionization chambers (developed by the 
SALMROM laboratory, at IFIN-HH) are the most viable as they constitute primary (reference) standards that are used in 
national laboratories for the metrology of ionizing radiation. Both types of chamber rely on the electronic balance principle 
and Bragg-Gray relation. They are basic detectors for measuring exposure rates and/or absorbed dose rates in various 
materials, including air. The experimental data provided by both chamber types are in agreement with market requirements 
and international data. Both are used as primary standards in national metrological laboratories. By using these two 
measuring procedures for gamma, X and beta radiation, one can determine various quantities such as exposure, exposure 
rate, dose, dose rate, activity, etc. Depending on intended use, radiation field, ambient conditions, kind of radiation, etc., the 
parameters of both chambers can be improved by varying the types of gas or gas mixture that are introduced in the 
sensitive volume. 
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1. Introduction 
 
The Röentgen has been used for many years as a unit 

of X-ray exposure. The free air ionization chamber was the 
instrument employed to determine it. One Röentgen is an 
exposure dose of X or gamma radiation such that the 
associated corpuscular emission per 0.001293 gram of air 
produces, in air, ions carrying 1 electrostatic unit of 
quantity of electricity of either sign [1], [2], [3]. According 
to this definition, a measurement of the number of 
röentgens need to take account all charge carriers 
produced in air by the high speed electrons that are 
themselves produced within the definite mass of air. 
According to the principle of electronic equilibrium, 
within a medium subseated to uniform irradiation the 
ionization produced outside of a specified mass, m, by 
high speed electrons generated inside is compensated by 
ionization produced by high speed electrons generated 
outside of m [4], [5].  

The measuring radiation doses are imported both in 
research and in practical applications whenever one needs 
to evaluate the effects of irradiation from the energy 
deposited by radiation into substance. Among the 
approaches currently available, the ones using free-air 
ionization chambers and cavity ionization chambers are 

the most viable inasmuch as they constitute primary 
(reference) standards used in national laboratories for the 
metrology of ionizing radiation. Both types of chambers 
rely on the electronic balance principle and on the Bragg-
Gray relation and are basic detectors for measuring 
exposure rates and/or absorbed dose rates in various 
materials, including air [1], [3]. The purpose of this paper 
is to present results for carrying out the second type 
ionization chamber detectors and their functional 
characteristics. 

 
 
2. Materials and methods 
2.1. The free-air ionization chamber method 
 
The general characteristics of free ionization 

chambers are shown in Fig. 1. This is a cross section of a 
parallel plate ionization chamber. The plate system is 
introduced in a radiation shielding box. The X-ray beam is 
delimited by the diaphragm, D, therefore the photons pass 
centrally between the plates. A high potential (field 
strength of the order of 100V/cm) on plate H, sweeps out 
the ionization produced in the air between the plates [4,5]. 
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Fig. 1. Schematic plan view of a parallel-plate free-air 
ionization chamber. S - source of radiation, X - x-ray 
beam, G – grid, C - collector, E - electrometer, H - High  
             voltage, e1, e2, e3, e4, - electron trajectories 
 
 
The ionization is measured for a length, L, determined 

by the limiting lines of force to the edges of the collector, 
C. These lines are made straight and perpendicular to the 
collector by the guard plates, G, and surrounding guard 
wires or strips, W. The latter are connected to a resistance 
dividing network to grade the potential uniformly across 
the gap between C or G, and H. Ionization is collected 
from the region enclosed by the dashed lines, F [2], [5]. 

 
 
 

 
Fig. 2 Electric structure for the free-air  

ionization chamber. 
 

Its electric structure (Fig. 2) consists of: a voltage 
electrode; a collecting electrode, guard electrodes, and a 
voltage divider. The electric system of the ionization 
chamber was mounted on a duralumin plate (front panel), 
sliding inside the chamber on two metal runners.  

Two diaphragms, made of stainless steel and wolfram 
alloy, were placed one each on the side walls for the entry 
and exit of the X or gamma-ray beam. The free-air 
ionization chamber (Fig. 3), developed for this experiment, 
was a parallelepiped, 660 mm long, 300 mm wide and 380 
mm high, made of metal sheet and lined with 5-mm thick 
lead plates. [2], [4], [12]. 

 
a 

 

 
b 
 

Fig. 3. (a) Free-air ionization chamber - general view in 
3D, B - Switch On/Off, C1, C2, C3, C4 - Coaxial cable, 
L1 - High voltage electrode,L2 - Collecting electrode, 
SIT - High voltage supply, E - KEITHLEY 6517A 
Programmable    Electrometer, S - Radioactive  source.,  
           (b) 1 – body case, 2 - functional structure. 

 
 

The block-scheme used for the measurement of 
characteristic parameters for this detector, is shown in 
figure 4 [12]. 
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3. Experimental results 
 
3.1. The cavity ionization chamber 
 
When constructing the free-air ionization chamber, 

several main technical, technological and operational 
problems were taken into account, including: the 
electronic balance; the air mass, calculated after the 
chamber diaphragm definition; field distortions; X-ray 
leaks, electron losses; diaphragm-collector distance; 
recombination losses; air dampening corrections; 
protection against stray radiation, etc. The principal 
technical and operational features of the ionization 
chamber, as tested in normal operation (test) conditions, 

were: I leakage = 2.97×10-16 A, for rated working voltage: 

U = -1200 V; Iσ = 0.038× 10-16A (n = 20 values for I
leak.); .. leakIrel Iσσ = = 0.0129; Average ionization 

current in the presence of a 241Am radiation source having 
600 mCi ±10% (2.22× 1010Bq±10%): .ionizI =3× 10-15 A 
±10%; for a voltage U =-1200 V and d = 1.20 m±0.005 m; 
with standard deviation Iσ = 0.0305×10-15A (for n=100 
measurements). Considering P* = 95%, n = 100 and k = 
2.09, .ionizI = (3±0.0638)× 10-15A; Characteristic I-U 
curve plateau: -1000 V ÷ -2100 V; Relative variation in 
ionization current when using polarization voltages within 
the range -1200 V ÷ -2100 V: ∆I/I0 = 0.5%; Ionization 
chamber response in terms of radiation energy of the 
241Am radionuclide: R = 8.7× 10-11 A/R×h-1, [12,13]. 

 
3.2. The cavity ionization chamber 

 
By taking into account the principle of electronic 

balance, the Bragg-Gray relation and the cavity theory, 
different types of cavity ionization chamber were made; 
one of graphite-coated Teflon (PTFE), (Fig. 6) [14] order 
to better illustrate the basic ionometric principles of the 
cavity theory.  

One type of the cavity ionization chamber consisted of 
a cylinder made of graphite-coated Teflon (in nearly equal 
proportion with each other), with overall dimensions L=50 
mm and Ø=16 mm, and walls about 1 mm thick. The 
components of the chamber were: a thimble-shaped 
voltage electrode (the chamber case), made of graphite-
coated Teflon; a collecting electrode, of the same material, 
threaded into the chamber insulation by a collecting pin; 
and an insulator, made of polystyrene of very high electric 
resistivity (ρ > 1016 Ω×cm), threaded into the case [12, 
14]. 

In normal testing conditions, several technical-
operational features were identified: 

 
 

Fig. 5. Cavity ionization chamber made of graphite-
coated Teflon; 1 - collecting electrode, 2 - voltage 
electrode, 3 - O-ring, 4 -insulator, 5 - collecting pin,       
6 - gold pin, 7 - inlet pipe,  8 - calmping  system,  9 - clip,  
                              10 - elastic system. 

 
 

 
 

Fig. 6. Cavity ionization chamber - general view in 3D 
 
 

I leakage /U =-800 V = 1× 10-15A ± 5%; with standard 
deviation: Iσ  = 0.0346× 10-15A (n=100 values for I leak.); 

.. leakIrel Iσσ = = 0.0346; Characteristic I-U curve 
plateau: -500 V ÷ -1200 V; Average ionization current in 
the presence of a 241Am radiation source having Λ= 600 
mCi ±10% (2.22 × 1010 Bq ±10%): .ionizI = 6.49 × 10-13 A 
±10%; for a voltage U = -800V; and d = 0.2 m ±0.005 m; 
with standard deviation Iσ  = 0.160 × 10-13A (for n = 100 
measurements). Considering P* = 95%, n = 100 
measurements and k= 2.09, .ionizI = (6.49±0.074)× 10-13A; 
Relative variation in ionization current with the 
polarization voltage within the range -500 V ÷ -1200 V: 
∆I/I0 = 0.1%; The ionization chamber response to the 
gamma radiation of a radionuclide 241Am, with                    
Λ = 600 mCi ± 10% (2.22× 1010 Bq ± 10%) for exposure 
rate ( X& =103.62 mR/h) was:  

cmdtohRA
X

I ioniz 20:;./102.6 18 =×= −−
&

[12,13]. 
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